Link Prediction via Matrix Factorization
نویسندگان
چکیده
We propose to solve the link prediction problem in graphs using a supervised matrix factorization approach. The model learns latent features from the topological structure of a (possibly directed) graph, and is shown to make better predictions than popular unsupervised scores. We show how these latent features may be combined with optional explicit features for nodes or edges, which yields better performance than using either type of feature exclusively. Finally, we propose a novel approach to address the class imbalance problem which is common in link prediction by directly optimizing for a ranking loss. Our model is optimized with stochastic gradient descent and scales to large graphs. Results on several datasets show the efficacy of our approach.
منابع مشابه
A perturbation-based framework for link prediction via non-negative matrix factorization
Many link prediction methods have been developed to infer unobserved links or predict latent links based on the observed network structure. However, due to network noises and irregular links in real network, the performances of existed methods are usually limited. Considering random noises and irregular links, we propose a perturbation-based framework based on Non-negative Matrix Factorization ...
متن کاملWZ factorization via Abay-Broyden-Spedicato algorithms
Classes of Abaffy-Broyden-Spedicato (ABS) methods have been introduced for solving linear systems of equations. The algorithms are powerful methods for developing matrix factorizations and many fundamental numerical linear algebra processes. Here, we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW factorizations of a nonsingular matrix as well as...
متن کاملLink prediction based on non-negative matrix factorization
With the rapid expansion of internet, the complex networks has become high-dimensional, sparse and redundant. Besides, the problem of link prediction in such networks has also obatined increasingly attention from different types of domains like information science, anthropology, sociology and computer sciences. It makes requirements for effective link prediction techniques to extract the most e...
متن کاملNew Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کاملLink sign prediction by Variational Bayesian Probabilistic Matrix Factorization with Student-t Prior
In signed social networks, link sign prediction refers to using the observed link signs to infer the signs of the remaining links, which is important for mining and analyzing the evolution of social networks. The widely used matrix factorization-based approach – Bayesian Probabilistic Matrix Factorization (BMF), assumes that the noise between the real and predicted entry is Gaussian noise, and ...
متن کامل